Follow us on Twitter

Wednesday, July 11, 2018

#Commodities #TradingHouses increasingly looking to #BigData to find the next trade

As margins get squeezed, #Commodities Trading Houses are increasingly looking to #BigData to find the next trade. Yet computers still struggle to find patterns and come up with trading ideas on their own. 

Commodity trading enters the age of digitisation

Search is on for data experts who are able to employ algorithms to boost margins

© FT montage; Bloomberg; Dreamstime

Commodity houses are on the hunt for data experts to help them gain an edge after seeing their margins squeezed by rivals.

Currencies, equities and interest-rates investors have for years used algorithms, machine learning and artificial intelligence to turn data into successful trades.

Now, commodity traders are seeking ways of exploiting their information to help them profit from price swings.

"It is really a combination of knowing what to look for and using the right mathematical tools for it," said Peter Leoni, who holds a mathematics PhD and is one of the two data scientists within a newly created team of 10 at EDF Trading, the London-based trading arm of the French utility group.

"We want to be able to extract data and put it into algorithms," added Philipp Büssenschütt, EDFT chief commercial officer. "We then plan to move on to machine learning in order to improve decision-making in trading and, as a result, our profitability."

...

In an industry where traders with proprietary knowledge, from outages at west African oilfields to crop conditions in Russia, vied to gain an upper hand over rivals, the democratisation of information over the past two decades has been a challenge.

Through the broad dissemination of news, weather reports and cargo-tracking, commodity traders have found their margins under pressure as their information edge, that once buttressed their profits as middlemen, has been blunted.

Return on equity for leading trading houses ...has dropped significantly.

Some of the oil and metals traders enjoyed returns of about of 50-60 per cent in the mid-2000s, but this has declined to levels in the mid-teens.

Agricultural traders...known as the ABCDs ...all recording single-digit ROE...

As a consequence, an increasing number of traders are hoping to increase their competitiveness by feeding computer programs with mountains of information they have accumulated from years of trading physical raw materials to try and detect patterns that could form the basis for trading ideas.

"In agriculture, metals or energy, the traders are looking to gather data on a large scale and run machine-learning algorithms to find patterns linking fundamentals with price movements," said Etienne Amic, a former JPMorgan banker and chairman of Vortexa, a company making cargo-tracking software.

Cargill, for example, started to build its global digital team two years ago and now has 75 people focused on digital innovation and incubation, with a data science team of 12.

According to Gert-Jan van den Akker, president of Cargill's agricultural supply chain division, the combination of data and cutting-edge technology is already leading to better trading decisions.

"Humans have always played a vital role in trading and understanding futures markets, but we're no longer relying on human brain power alone," he said.

At the same time, computer models and algorithmic programs are also exerting greater influence on the prices of commodities in the futures markets, making it more difficult to hedge positions.

...

Between 2012 and 2016, almost two-thirds of crude oil contracts traded on CME's futures exchange were automated, up from 54%...soyabeans and wheat, the figure rose from 39% to almost half, while in precious metals it has climbed to 54% from 46%.

...

Despite this new enthusiasm, the road to electronification may not come easily for some traders. Compared to other financial and industrial sectors, "they are coming from way behind," said one consultant.

One issue is that some of the larger commodities traders face internal resistance in centralising information on one platform.

With each desk in a trading house in charge of its profit-and-loss account, data are closely guarded even from colleagues, said Antti Belt, head of digital commodity trading at Boston Consulting Group. "The move to 'share all our data with each other' is a very, very big cultural shift," he added.

Another problem is that in some trading houses, staff operate on multiple technology platforms, with different units using separate systems.

Rather than focusing on analytics, some data scientists and engineers are having to focus on harmonising the platforms before bringing on the data from different parts of the company. 

Even where the digital infrastructure is in place, it may take some time before AI becomes a large part of commodities trading. Vitol's chief information officer Gerard Delsad has increased his team by a fifth to more than 100 in the past three years, including several data scientists.

He said a computer still struggles to find patterns in the data and come up with trading ideas on its own. "You still the need the trader to give some ideas, some hints [of] where to look, and then you can find some interesting stuff."

Read the whole article here: https://amp.ft.com/content/8cc7f5d4-59ca-11e8-b8b2-d6ceb45fa9d0?__twitter_impression=true

Copyright The Financial Times Limited . All rights reserved. 



No comments:

Post a Comment

Commented on

The Pangea Advisors Blog


Pangea on Twitter